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ABSTRACT
Public and private institutions must often allocate scarce resources

under uncertainty. Banks, for example, extend credit to loan appli-

cants based in part on their estimated likelihood of repaying a loan.

But when the quality of information differs across candidates (e.g.,

if some applicants lack traditional credit histories), common lending

strategies can lead to disparities across groups. Here we consider a

setting in which decision makers—before allocating resources—can

choose to spend some of their limited budget further screening

select individuals. We present a computationally efficient algorithm

for deciding whom to screen that maximizes a standard measure

of social welfare. Intuitively, decision makers should screen candi-

dates on the margin, for whom the additional information could

plausibly alter the allocation. We formalize this idea by showing

the problem can be reduced to solving a series of linear programs.

Both on synthetic and real-world datasets, this strategy improves

utility, illustrating the value of targeted information acquisition in

such decisions. Further, when there is social value for distributing

resources to groups for whom we have a priori poor information—

like those without credit scores—our approach can substantially

improve the allocation of limited assets.

CCS CONCEPTS
• Theory of computation → Mathematical optimization; •
Computing methodologies → Machine learning; • Applied
computing → Economics.
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1 INTRODUCTION
Approximately one in seven U.S. households have unmet demand

for small-dollar loans, and are often unable to secure credit from

traditional financial institutions as they have little or no formal

credit history [1]. However, in the majority of these households,

individuals receive regular income and typically pay their bills on

time, which suggests many in fact would have low risk of default [1].

One barrier to providing loans to this low-risk yet underserved sub-

population is that it can be more expensive and time-consuming to

screen individuals with non-traditional financial histories, limiting

the inclusiveness of the banking system.

Motivated by this problem, we propose and analyze a strategy in

which one can pay to acquire additional information on applicants.

The task for a budget-constrained decision maker is thus to first

select a set of candidates to screen and then, given the results of that

screening process, determine to whom to allocate the remaining

resources. In modeling this situation, we assume there is a fixed

cost for screening each applicant, and that decision makers have

prior knowledge of the distribution of information they would

receive if they choose to screen an applicant. In practice, we note

that such prior knowledge could be obtained by screening a small

random sample of applicants to learn the resulting information

distributions.

We derive an efficient algorithm for computing an optimal, utility-

maximizing strategy for the general screening and allocation prob-

lem. To do so, we first show that once a set of candidates has been

selected to screen, it is optimal to allocate the remaining resources

according to a threshold rule, with assets distributed to those candi-

dates having post-screening expected utility above a fixed threshold.

Further, for any fixed threshold policy, we show that one can find

the optimal set of candidates to screen (while satisfying the bud-

get constraint) via a linear program. Intuitively, one should screen

candidates near the margin, for whom the screening process could

reveal information that could push a candidate across the threshold.

But to do this rigorously, one also needs to account for the precise

structure of the prior information. Finally, we sweep over the pos-

sible thresholds, solving the corresponding linear program at each

point. In this manner, we obtain both a rule to screen candidates

and a specific threshold policy for distributing funds to candidates

with sufficiently high post-screening value.

We further consider an extension of the above problem in which

policymakers have explicit value for diversity. For example, in-

stead of simply finding a max-utility policy, one might maximize

utility subject to the constraint that a particular group—such as
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those who traditionally have had limited access to credit markets—

achieve at least a fixed minimum utility. In the United States, those

with unmet demand for credit are disproportionately black and

Hispanic [1], heightening the value of diversity considerations in

allocation decisions. We show that this (and related) extensions

can be incorporated into our general algorithmic approach in a

straightforward manner.

To demonstrate the potential value of augmenting allocation

decisions with a screening phase, we apply our methods to both

synthetic datasets and one with real measures of creditworthiness.

In particular, we examine the potential benefits of screening as a

function of the cost and value of information. Especially when we

impose a diversity constraint, we find that screening strategies can

significantly outperform a naive strategy that simply attempts to

satisfy the constraint without screening any applicants.

For concreteness, we frame our discussion in terms of lending

decisions, though our approach applies to many allocation settings.

For example, it is often challenging to accurately assess house-

hold wealth—particularly in countries where informal and irregular

work is more common—and, in turn, to appropriately target the

distribution of government subsidies [22]. The simple strategy of

distributing funds to those families clearly in need can systemati-

cally overlook populations with harder-to-verify financial status.

As with lending, one can judiciously allocate some of the budget

to more extensively screen certain applicants, ensuring funds are

ultimately distributed to those who can benefit the most.

2 RELATEDWORK
Several papers address the problem of active feature acquisition [19,

20, 25], where one can selectively purchase missing data to improve

the overall out-of-sample performance of a statistical model. We

consider the related problem of acquiring features to identify spe-

cific, high-value individuals. While there is some shared intuition

between the two settings—that one should seek information on in-

dividuals most likely to alter downstream decisions—the technical

approach we take is different, in large part because our end goal is

optimal allocation rather than statistical learning.

In a related, recent stream of research, Bakker et al. [2] and

Noriega-Campero et al. [22] likewise consider a feature acquisition

problem, but with fairness constraints. In their setting, the decision

maker must acquire additional features for each individual to en-

sure classification decisions have similar errors rates across groups—

including parity in false negative and false positive rates—a common

measure of fairness in the machine learning community [8, 15, 17].

Our approach to the problem differs in three important respects.

First, we adopt the perspective of constrained utility maximization.

Past work has shown that directly equalizing error rates can lead

to outcomes that, counterintuitively, may harm the very groups

they were designed to protect [9, 10, 18]. We avoid such deleterious

outcomes by instead framing the problem explicitly in terms of

group-specific utilities: fairness is encoded into our requirement

that the decision maker must allocate some minimum amount of

utility to each group. Second, we focus on one-shot screening deci-

sions, in which decision makers simply choose whether or not to

acquire information on each individual, rather than sequentially

deciding how much information to acquire based on the results

of each past acquisition decision. Our one-shot formulation maps

to the binary decision structure (i.e., to screen or not to screen)

common in many institutions and leads to different optimization

challenges. Third, we directly model the tradeoff between screen-

ing and allocation decisions by tying both to a common budget

constraint (i.e., more screening means less funds are available to

ultimately distribute to individuals).

Elzayn et al. [12] also consider equitable ways to allocate re-

sources, but in a setting where learning occurs by repeatedly allocat-

ing resources instead of by purchasing information. In comparison

to our work, they focus on solving the problem of censored feed-

back, where the learner may not understand, and thus never allocate

resources to, groups who did not previously receive resources.

Finally, our work touches on research from the fair division

and allocation literature [5, 21, 26], which considers how to share

resources while satisfying fairness properties defined between indi-

viduals. The former devises mechanisms wherein strategic agents

self-divide the resources fairly, and the latter studies the existence

of allocations that jointly satisfy various fairness notions. In con-

trast to our work, that line of research is particularly concerned

with individual incentives, strategic action, and equilibrium effects.

3 A MODEL OF SCREENING AND
ALLOCATION

We model screening and allocation decisions as a sequential pro-

cess in which a budget-constrained lender first selects a (possibly

random) subset of candidates to further screen from a pool of n
applicants, and then, based on the information revealed in that

screening phase, selects a second (possibly random) subset of can-

didates to receive a loan.

We assume the value of lending to an applicant i is given by the

random variable Ui . These utilities are intended to capture the full

social value of providing loans, and we imagine the lender aims

to optimize social welfare, as in the case of a government agency.

In general, the lender has only partial information about Ui . More

specifically, if the lender chooses not to screen an applicant, we

assume the lender knows only the applicant’s conditional expec-

tation µi = E[Ui | Xi = xi ] given their pre-screening covariates

xi , such as credit score for those applicants who have traditional

credit histories. On the other hand, if the lender opts to screen an

applicant, they learn E[Ui | Xi = xi , X̃i = x̃i ], where x̃i denotes the
additional information one gains through screening. For example,

x̃i might encode applicant i’s history of paying their electricity or

phone bills—information that is often feasible to acquire with some

extra effort and which is a good indicator of creditworthiness [1].

When deciding whom to screen, we assume the lender knows the

distribution of D = (D1, . . . ,Dn ), where Di = E[Ui | Xi = xi , X̃i ].
That is, the lender knows how their estimate of utility could change

if they decide to screen each applicant, where these distributions

may depend on the available pre-screening covariates. A lendermay,

for example, thus choose only to screen applicants whose estimate

is likely to substantially change given additional information. We

further assume the lender must pay a fixed cost cS for screening
an applicant and a cost cA for underwriting a loan. For simplicity

we assume these costs do not vary across applicants, though it is
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straightforward to extend to the more general case; see the online

appendix for details.

Based on knowledge of the above information and cost structure,

the lender selects a randomized strategy to screen applicants. That

is, the lender chooses a vector P = (p1, . . . ,pn ), meaning that each

applicant i is selected to be screened independently with probability
pi . Let S = (S1, . . . , Sn ) indicate which applicants are ultimately

screened under this policy; therefore, Si ∈ {0, 1} is a Bernoulli

random variable with probability of success pi .
Given this randomized screening policy, we can now write the

information
ˆU = (Û1, . . . , Ûn ) the lender has at the end of the

screening phase as follows:

Ûi =

{
E[Ui | Xi = xi ] if Si = 0,

E[Ui | Xi = xi , X̃i ] if Si = 1.
(1)

In other words, Ûi is the lender’s post-screening estimated utility of

giving a loan to applicant i . In particular, if Si = 1 (i.e., the applicant

is screened), the lender’s estimate changes from E[Ui | Xi = xi ],
the estimate based only on applicant i’s pre-screening covariates xi ,
to E[Ui | Xi = xi , X̃i = x̃i ], which incorporates the post-screening

information x̃i .
Finally, the lender chooses an allocation policy, denotedA( ˆU) =

(A1, . . .An ), where Ai ∈ [0, 1] specifies the probability a loan is

(independently) offered to each applicant. Importantly, A is a func-

tion of the lender’s post-screening utility estimates
ˆU. For example,

the lender might give loans to the individuals with the highest

post-screening utility estimates, up to the budget constraint.

Combining all of the above, the lender’s optimization problem is

to choose screening and allocation policies (P∗,A∗) that maximize

expected welfare,

(P∗,A∗) ∈ argmax

P,A
E

[ n∑
i=1

UiAi

]
, (2)

subject to being budget-balanced in expectation,
1

E

[ n∑
i=1

cSSi + cAAi

]
≤ B, (3)

where B is a fixed, non-negative constant.

In some settings, decision makers may value diversity in their

allocations. For example, they may wish to ensure a certain mini-

mum number of loans are provided to groups that historically have

been excluded from credit markets. One can encode this policy

preference directly into the utilities, in which case the resulting

optimization problem would incorporate one’s value for diversity.

That approach, however, requires decision makers to agree upon

these utilities to interpret the results, which can be challenging.

Here we take a complementary approach that explicitly allows

value for diversity to differ across decision makers. Suppose the ap-

plicant pool is partitioned intom groups {G1, . . . ,Gm }; for example,

ifm = 2, we might partition candidates into those who traditionally

have had access to credit markets and those who have not. Then

we require the selected policy (P∗,A∗) to allocate at least Λj ≥ 0

1
By requiring the budget constraint to hold only in expectation—rather than exactly—

we are able to find a computational tractable solution to the problem. In practice, such

a constraint means that agencies are allowed some flexibility as long as they don’t

overspend on average, which, we believe, is often a realistic requirement.

utility to group G j , where these utilities do not themselves include

any value for diversity:

E


∑
i ∈G j

UiAi

 ≥ Λj . (4)

In practice, as we discuss below, one would solve this optimization

problem for a range of Λ, which traces out the Pareto frontier of

possible policies across different group constraints, corresponding

to different values for diversity. The diversity condition above is

expressed in terms of utility, but we might, alternatively, simply

lower bound the number of loans
∑
i ∈G j Ai given to members of

each group G j . This alternative constraint can be handled in a

straightforward manner by our algorithm detailed below.

3.1 A stylized example
We illustrate the above ideas in the context of a simple, stylized

example. Suppose a lender must decide how best to allocate loans

among an applicant pool of 13 people, with an overall budget of

$2,000. Providing a loan costs cA = $400, and additional screening

of an applicant costs cS = $50.

Further suppose that five of the applicants are able to provide

rich credit histories, and the expected utility of giving each of them

a loan is µi = $750. For this group, additional screening would

not provide any more information. Imagine that the other eight

applicants do not have formal credit histories, and the utility of

giving them a loan is accordingly lower due to the risk of default,

with µi = $500. However, the lender knows that these applicants

come in two types that could be disambiguated through additional

screening. More specifically, the lender knows that after screening,

individuals in this group can be divided into those with expected

utility $1,000 (with 50% chance) and those with expected utility

$0 (with 50% chance). The high-utility group could, for example,

correspond to those who demonstrate a history of consistently

paying their bills on time.

The naive strategy that does not screen any individuals would al-

locate five loans to hit the budget constraint, since 5×$400 = $2,000.

All five loans would go to applicants with rich credit histories

(µi = $750) over those without (µi = $500). In this case, the total

expected utility of the no-screening allocation is 5 × $750 = $3,750.

But in this scenario, one can improve overall utility by screening

all eight applicants without formal credit histories and then grant-

ing loans to the high-utility applicants that are identified. Under

that strategy, we expect four of the eight screened applicants to

be identified as high utility ($1,000), and so the expected utility

of the allocation is 4 × $1,000 = $4,000, greater than the expected

utility of $3,750 under the no-screening strategy. Finally, the ex-

pected cost of the strategy is 8 × $50 = $400 for screening plus

4 × $400 = $1,600 for distributing the loans, totaling $2,000 and

satisfying the budget constraint. In this example, one can thus im-

prove overall utility—and even allocate more loans to the group

that a priori appears worse—by incorporating additional screening

into the decision-making process.

4 FINDING OPTIMAL POLICIES
We now derive an efficient algorithm to find optimal screening and

allocation policies (P∗,A∗), subject to the budget and diversity
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constraints. We start by showing that over the full space of policies,

it is optimal to allocate resources according to a threshold policy,
with loans dispersed to individuals having post-screening expected

utility Ûi above a group-specific threshold tj for j = 1, . . . ,m. Then,

for each threshold policy, we show the optimal screening policy can

be obtained by solving a linear program (LP), a type of optimization

problem with linear objective function and linear constraints, for

which their exist fast solution methods [3]. As a result, we can find

an optimal combined screening and allocation policy by sweeping

over threshold policies and solving the corresponding LP for each

such policy.

We begin by formally defining threshold policies.

Definition 1 (Threshold Policy). A threshold policy is an allocation

policy A for some fixed tj ∈ R ∪ {−∞,∞} and α j ∈ [0, 1], j =
1, . . . ,m, such that

Ai =

{
1 Ûi > tдi ,

αдi Ûi = tдi ,

where дi denotes the group membership of individual i .

Threshold policies deterministically allocate resources to those

with post-screening expected utilities above a fixed, group-specific

threshold tj . Randomization (i.e., allocating resources with proba-

bility α j ) at the threshold tj may be necessary to exactly satisfy the

budget constraint, which is important because for an individual not

screened, the distribution of Ûi is concentrated at a single point.

Theorem 2 below formally states that it is sufficient to restrict to

the set of threshold policies when searching for a globally optimal

screening and allocation policy.

Theorem 2. Suppose the constrained optimization problem defined
by Eqs. (2), (3), and (4) has a solution (P∗,A∗). Then there is a
threshold policy T ∗ such that (P∗,T ∗) is also a solution.

To see this, suppose that P∗
deterministically selects a subset of

applicants to screen. Then, for each groupG j , it is clear one should

allocate loans to the approximately kj individuals in each group

with the highest post-screening estimated utility, where kj is the
number of loans granted to each group underA∗

. Such a rank-based

allocation can equivalently be written as a threshold rule with the

same expected utility. The more general case, in which screening

decisions are randomized, introduces some technical complications,

but the spirit of the argument is similar. Full details can be found

in the online appendix.

Now, given a threshold policy T with thresholds t1, . . . , tm ∈ R
and boundary randomization probabilities α1, . . . ,αm ∈ [0, 1], we

turn to finding an optimal companion screening policy. We show

that such an optimal screening policy P can be found by solving

an LP. In particular, the LP has n decision variables p1, . . . ,pn , with
pi ∈ [0, 1] specifying the probability that applicant i is screened;
the objective equals the utility of the combined screening and allo-

cation policy; and the constraints encode our budget and diversity

conditions.

To construct the LP, we first define the following quantities

that depend on both the threshold rule T and the lender’s prior

knowledge on the value of screening:

qi = Pr(Di > tдi ),

ei = E[Ui | Di > tдi ],

oi = 1µi>tдi + αдi · 1µi=tдi ,

where дi denotes applicant i’s group membership. Recall that µi de-
notes pre-screening expected utility and Di denotes post-screening

expected utility if applicant i is screened. Both µi and the distribu-

tion of Di are known in advance.

For fixed screening probabilities p = (p1, . . .pn ), the expected
utility of the corresponding screening and allocation policy can

now be expressed as a linear function of p:

n∑
i=1

[qi · ei · pi + oi · µi · (1 − pi )] . (5)

The first summand reflects the expected utility associated with

applicant i if they were screened, and the second summand reflects

the expected utility if they were not screened.

Our goal is to maximize the expression in Eq. (5) subject to the

budget and diversity conditions, which we now show can also

be expressed as linear constraints on p. In terms of the constants

defined above, the budget constraint can be written as

n∑
i=1

[cS · pi + cA · qi · pi + cA · oi · (1 − pi )] ≤ B. (6)

Likewise, the j diversity constraints in Eq. (4) become∑
i ∈G j

[qi · ei · pi + oi · µi · (1 − pi )] ≥ Λj , (7)

for j = 1, . . . ,m.

Together, the objective given by Eq. (5), with constraints defined

by Eqs. (6) and (7), define a linear program with decision variables

{pi }, the solution of which—if one exists— gives a screening policy

P∗
that is optimal for the threshold policy T . A jointly optimal

screening and allocation policy (P∗,T ∗) can accordingly be found

through a grid search over all threshold policies T in a (discretized)

space Rm × [0, 1]m . For each choice of policy T , defined by thresh-

old and randomization parameters t1, . . . , tm and α1, . . . ,αm , we

find the corresponding optimal screening policy P by solving the

LP described above. Then, among the resulting screening-allocation

pairs, the one maximizing utility is guaranteed to be globally opti-

mal.

5 EXPERIMENTS
We now investigate the value of our sequential screening and allo-

cation approach through two simulation exercises, one based on

synthetic data and another based on real loan data. First, with the

synthetic data, we examine the optimal policies as we vary both the

cost of screening and the value of the resulting information. Then,

with the real-world data, we illustrate how a decision maker could,

in practice, operationalize our screening and allocation approach

to pursue equity when distributing limited resources.

In each experiment, we allocate loans to members of two groups.

One of the groups—which we call the “targeted” group—can be

screened for more information at some cost, and we imagine there

is social value to distributing more resources to this group. For
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Figure 1: For an applicant with pre-screening likelihood
of being creditworthy xi = 0.4, the distribution of post-
screening creditworthiness, Pr[Yi = 1 | Xi = 0.4, X̃i ]. Under
a regime with high value of information (red line), the post-
screening distribution has higher variance than in a setting
with low value of information (blue line).

example, the targeted group may be comprised of those who tra-

ditionally have not had ready access to the banking system and

accordingly have limited formal credit history. For simplicity, we

further assume that those in the non-targeted group cannot be

screened, perhaps because they already have complete credit histo-

ries.

We define the utility of lending to applicant i to be

Ui =

{
a Yi = 1,

b Yi = 0,
(8)

where Yi ∈ {0, 1} indicates whether they would pay back the loan,

and a and b are fixed, known constants. In both of our experiments,

we set a = $1,000 and b = −$200, meaning there is $1,000 of

social utility when an applicant receives and pays back a loan and

−$200 utility when an applicant defaults on a loan, for example

because defaulting could trigger further financial distress. As above,

we imagine the lender is a government institution or other agent

attempting to maximize total social utility. We further assume that

the pre-screening covariate xi ∈ [0, 1] specifies the lender’s pre-

screening estimate of applicant i’s likelihood to repay a loan; in

other words, xi = Pr(Yi = 1 | Xi = xi ). The covariate xi can thus

be translated into (pre-screening) expected utility µi by Eq. (8):

E[Ui | Xi = xi ] = axi + b(1 − xi ).

5.1 Synthetic data
We illustrate the value of screening in four regimes of low vs. high

cost of information paired with low vs. high value of information.

To do so, we created four synthetic datasets, each comprised of

n = 500 individuals.

For all four datasets, we first evenly split the population into

targeted and non-targeted groups. For each applicant in the targeted

group, we generated their pre-screening probability of repayment

xi (or, equivalently, their observed pre-screening covariates) by

independently drawing from a beta distribution
2
with mean 0.5

2
We use the beta as it is a familiar, easily-parameterized function with support on

[0, 1].
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Figure 2: Comparison of our optimal screening strategy
(blue line) with one without screening (black line) in four
regimes with different costs and values of information.

and count parameter 50.
3
Similarly, for each applicant in the non-

targeted group, we generated their pre-screening probability of

repayment by independently drawing from a beta distribution with

mean 0.70 and count parameter 50. The higher mean repayment

probability for members of the non-targeted group corresponds to

them being, on average, more creditworthy.

Now, for each applicant in the targeted group, the lender may

elect to screen them. As a result of screening, the lender receives

an improved estimate x̃i of the applicant’s repayment probability,

so that:

E[Ui | Xi = xi , X̃i = x̃i ] = ax̃i + b(1 − x̃i ).

We assume x̃i is drawn from a beta distribution with mean xi (i.e.,
the lender’s pre-screening estimate of the applicant’s repayment

probability). In the high-information scenario, we set the count pa-

rameter for this beta distribution to be 5; and in the low-information

scenario, we set it equal to 25.

Figure 1 shows these two post-screening information distribu-

tions for an applicant with xi = 0.4. As illustrated in the plot, the

high-information distribution (red line) has higher variance than

the low-information distribution (blue line), and so screening is

more likely to reveal very high risk and very low risk applicants in

the high-information setting. Finally, we set the cost of screening

cS to be $25 in the low-cost scenario and $100 in the high-cost

scenario, the cost of a loan to be cA = $1,000, and the total budget

to be B = $50,000.

Given these four datasets, we computed the optimal screening

and allocation strategies using the algorithm described above.
4
In

our original problem formulation, the diversity constraint in Eq. (4)

specified only that we lower bound the utility of each group. To

3
In terms of theα and β shape parameters often used to parameterize beta distributions,

the mean is α/(α + β ) and the count parameter is α + β . A higher count corresponds

to a lower variance.

4
Because only one group can be screened in our experiments, we use a faster variant

of our optimization algorithm, described in the online appendix. For any fixed set of

parameters, this approach returns the optimal screening and allocation policy within

a few seconds with the open-source LP solver SCS [23].
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better understand the impact of diversity on utility, we modify this

constraint to be a strict equality for the utility of the targeted group

and set the lower bound on utility to be $0 for the non-targeted

group. Thus, across a range of exactly satisfied utilities for the

targeted group, we find the strategy that maximizes overall utility.

Figure 2 shows the results of this analysis, with the blue lines

tracing out the Pareto frontiers for each of the four scenarios we

consider. For comparison, the black lines show the correspond-

ing result under a strategy that does not screen any applicants.

Specifically, for any fixed utility constraint on the targeted group,

the optimal no-screening policy first allocates loans to the k indi-

viduals in the targeted group most likely to repay based on their

pre-screening estimates xi , where k is chosen to satisfy the utility

constraint; and then any remaining budget is used to allocate loans

to those in the non-targeted group most likely to repay.

When either the value of information is high (left column) or

the cost of screening is low (bottom row), we find that screening

can be a valuable tool to improve utility. Notably, screening plays

a more important role in these examples as we demand greater

utility be allocated to the targeted group, since the no-screening

strategy ends up dispersing loans to relatively high-risk applicants

in the targeted group even though more creditworthy applicants in

that group could be identified for little marginal cost. As one might

expect, the gap between the screening and no-screening strategies

is particularly large when both information is valuable and cheap.

Indeed, in the high-value, low-cost setting (lower-left panel), one

can achieve substantial diversity with little drop in overall utility.

5.2 Empirical credit data
We next apply our approach to the German Credit Dataset [16],

which includes a variety of individual-level socioeconomic and

financial characteristics (e.g., age, employment status, and credit

history) on a sample of n = 1,000 people, of whom 700 are deemed

creditworthy. We define the targeted group to be those who cur-

rently do not own their residence, a subpopulation that comprises

28% of the dataset. In this case, 60% of individuals in the targeted

group are creditworthy compared to 74% in the non-targeted group.

For members of the targeted group, we assume the lender, prior

to screening, only knows the targeted group’s overall base rate of

creditworthiness. If, however, the lender chooses to screen an appli-

cant in the targeted group, they learn x̃i , the applicant’s likelihood
of being creditworthy conditional on all the available features in

the dataset. For members of the non-targeted group, we assume

this full estimate of creditworthiness is available prior to screening,

and that there is no opportunity to obtain additional information.
5

Finally, we translate estimates of creditworthiness to estimates of

utility via Eq. (8), in line with our simulations above.

Figure 3 shows the result of applying our screening and allocation

algorithm to this dataset, where we assume the cost of screening

cS is $100 (equal to our high cost regime in the synthetic datasets),

the cost of a loan cA is $1,000, and the total budget is B = $150,000.

Like before, we compare the Pareto frontier of our approach (blue

5
More specifically, at the start of this exercise, we train a logistic regression model on

the full dataset predicting creditworthiness as a function of the available covariates.

Then, for members of the targeted group, x̃i is the model-estimated probability of

creditworthiness for applicant i ; and for the members of the non-targeted group, that

same model estimate is available prior to screening.
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Figure 3: For the German Credit Dataset, comparison of
our optimal screening strategy (blue line) with one without
screening (black line).

line) to that of a naive policy in which the lender does not screen

applicants (black line). As with the synthetic datasets above, we find

that the optimal policies with screening substantially outperform

those without screening, particularly when we enforce a diversity

constraint. For example, when we require $50,000 of utility to come

from allocating loans to the targeted group, the maximum total util-

ity under the no-screening policy is $102,000, compared to $119,000

under the screening policy, an increase of 17%.

6 DISCUSSION
Many creditworthy individuals often have difficulty gaining access

to traditional credit markets due to lack of formal financial histories,

an issue that can exacerbate existing socioeconomic disparities. To

address this gap, we developed a simple and efficient algorithm

for a budget-constrained decision maker to screen applicants and

then allocate a limited resource, an approach that we find offers

substantial benefits on both real and synthetic lending datasets.

This joint screening-plus-allocation approach is especially useful

in settings where a targeted subset of the population—those most

in need of an intervention—are also those for whom the least in-

formation is available a priori, a common situation in many social

welfare programs.

Past research has shown that a dearth of high-quality data for

various subgroups of the population can lead to poor models in a

variety of domains [14, 24], including text analysis [4, 7, 13], facial

recognition [6], and automated hiring [11]. Looking forward, our

combined data acquisition and decision-making approach provides

one framework to address this challenge by jointly modeling the

cost of data collection and the value for subsequent improvements

in downstream decisions.
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