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ABSTRACT
As machine learning black boxes are increasingly being deployed in
domains such as healthcare and criminal justice, there is growing
emphasis on building tools and techniques for explaining these
black boxes in an interpretable manner. Such explanations are be-
ing leveraged by domain experts to diagnose systematic errors and
underlying biases of black boxes. In this paper, we demonstrate that
post hoc explanations techniques that rely on input perturbations,
such as LIME and SHAP, are not reliable. Specifically, we propose
a novel scaffolding technique that effectively hides the biases of
any given classifier by allowing an adversarial entity to craft an
arbitrary desired explanation. Our approach can be used to scaffold
any biased classifier in such a way that its predictions on the input
data distribution still remain biased, but the post hoc explanations
of the scaffolded classifier look innocuous. Using extensive evalu-
ation with multiple real world datasets (including COMPAS), we
demonstrate how extremely biased (racist) classifiers crafted by our
framework can easily fool popular explanation techniques such as
LIME and SHAP into generating innocuous explanations which do
not reflect the underlying biases.
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INTRODUCTION
Owing to the success of machine learning (ML) models, there has
been an increasing interest in leveraging these models to aid de-
cision makers (e.g., doctors, judges) in critical domains such as
healthcare and criminal justice. The successful adoption of these
models in domain-specific applications relies heavily on how well
decision makers are able to understand and trust their functionality
[6, 14]. Only if decision makers have a clear understanding of the
model behavior, can they diagnose errors and potential biases in
these models, and decide when and how much to rely on them.
However, the proprietary nature and increasing complexity of ma-
chine learning models makes it challenging for domain experts to
understand these complex black boxes, thus, motivating the need for
tools that can explain them in a faithful and interpretable manner.

As a result, there has been a recent surge in post hoc techniques
for explaining black box models in a human interpretable manner.
One of the primary uses of such explanations is to help domain
experts detect discriminatory biases in black box models [11, 24].
Most prominent of these techniques include local, model-agnostic
methods that focus on explaining individual predictions of a given
black box classifier, including LIME [20] and SHAP [15]. These
methods estimate the contribution of individual features towards a
specific prediction by generating perturbations of a given instance
in the data and observing the effect of these perturbations on the
output of the black-box classifier. Due to their generality, these
methods have been used to explain a number of classifiers, such
as neural networks and complex ensemble models, and in various
domains ranging from law, medicine, finance, and science [7, 10, 25].
However, there has been little analysis of the reliability and robust-
ness of these explanation techniques, especially in the adversarial
setting, making their utility for critical applications unclear.

In this work, we demonstrate significant vulnerabilities in post
hoc explanation techniques that can be exploited by an adversary to
generate classifiers whose post hoc explanations can be arbitrarily
controlled. More specifically, we develop a novel framework that
can effectively mask the discriminatory biases of any black box
classifier. Our approach exploits the fact that post hoc explanation
techniques such as LIME and SHAP are perturbation-based, to cre-
ate a scaffolding around any given biased black box classifier in
such a way that its predictions on input data distribution remain

Paper Presentation  AIES ’20, February 7–8, 2020, New York, NY, USA

180

https://github.com/dylan-slack/Fooling-LIME-SHAP
https://doi.org/10.1145/3375627.3375830
https://doi.org/10.1145/3375627.3375830


biased, but its behavior on the perturbed data points is controlled
to make the post hoc explanations look completely innocuous. For
instance, using our framework, we generate highly discriminatory
scaffolded classifiers (such as the ones that only use race to make
their decisions) whose post hoc explanations (generated by LIME
and SHAP) make them look completely innocuous, effectively hid-
ing their discriminatory biases.

We evaluate the effectiveness of the proposed framework on
multiple real world datasets — COMPAS [13], Communities and
Crime [17], and German loan lending [3]. For each dataset, we craft
classifiers that heavily discriminate based on protected attributes
such as race (demographic parity ratio = 0), and show that our
framework can effectively hide their biases. In particular, our results
show that the explanations of these classifiers generated using off-
the-shelf implementations of LIME and SHAP do not flag any of
the relevant sensitive attributes (e.g., race) as important features
of the classifier for any of the test instances, thus demonstrating
that the adversarial classifiers successfully fooled these explanation
methods. These results suggest that it is possible formalicious actors
to craft adversarial classifiers that are highly discriminatory, but
can effectively fool existing post hoc explanation techniques. This
further establishes that existing post hoc explanation techniques
are not sufficiently robust for ascertaining discriminatory behavior
of classifiers in sensitive applications.

BUILDING ADVERSARIAL CLASSIFIERS TO
FOOL EXPLANATION TECHNIQUES
In this section, we discuss our framework for constructing adver-
sarial classifiers (scaffoldings) that can fool post hoc explanation
techniques which rely on input perturbations. We first provide
a detailed overview of popular post hoc explanation techniques,
namely, LIME [20] and SHAP [15], and then present our framework
for constructing adversarial classifiers.

Background: LIME and SHAP
While simpler classes of models (such as linear models and decision
trees) are often readily understood by humans, the same is not true
for complex models (e.g., ensemble methods, deep neural networks).
Such complex models are essentially black boxes for all practical
purposes. One way to understanding the behavior of such classi-
fiers is to build simpler explanation models that are interpretable
approximations of these black boxes.

To this end, several techniques have been proposed in existing
literature. LIME [20] and SHAP [15] are two popularmodel-agnostic,
local explanation approaches designed to explain any given black
box classifier. These methods explain individual predictions of any
classifier in an interpretable and faithful manner, by learning an
interpretable model (e.g., linear model) locally around each predic-
tion. Specifically, LIME and SHAP estimate feature attributions on
individual instances, which capture the contribution of each feature
on the black box prediction. Below, we provide some details of these
approaches, while also highlighting how they relate to each other.

LetD denote the input dataset of N data points i.e.,D = (X,y) =
{(x1,y1), (x2,y2) · · · (xN ,yN )} where xi is a vector that captures
the feature values of data point i , and yi is the corresponding class
label. Let there be M features in the dataset D and let C denote

Figure 1: PCA applied to the COMPAS dataset (blue) as
well as its LIME style perturbations (red). Even in this low-
dimensional space, we can see that data points generated
via perturbations are distributed very differently from in-
stances in the COMPAS data. In this paper, we exploit this
difference to craft adversarial classifiers.

the set of class labels in D i.e., yi ∈ C. Let f denote the black box
classifier that takes a data point as input and returns a class label
i.e., f (xi ) ∈ C. The goal here is to explain f in an interpretable
and faithful manner. Note that neither LIME nor SHAP assume
any knowledge about the internal workings of f . Let д denote an
explanation model that we intend to learn to explain f .д ∈ G where
G is the class of linear models.

Let the complexity of the explanation д be denoted as Ω(д) (com-
plexity of a linear model can bemeasured as the number of non-zero
weights), and let πx (x ′) denote the proximity measure between in-
puts x and x ′, to define the vicinity (neighborhood) around x . With
all this notation in place, the objective function for both LIME and
SHAP is crafted to generate an explanation that: (1) approximates
the behavior of the black box accurately within the vicinity of x ,
and (2) achieves lower complexity and is thereby interpretable.

argmin
д∈G

L(f ,д, πx ) + Ω(д) (1)

where the loss function L is defined as:

L(f ,д, πx ) =
∑
x ′∈X ′

[f (x ′) − д(x ′)]2πx (x
′)

where X ′ is the set of inputs constituting the neighborhood of x .
The primary difference between LIME and SHAP lies in how Ω

and πx are chosen. In LIME, these functions are defined heuristi-
cally: Ω(д) is the number of non-zero weights in the linear model
and πx (x ′) is defined using cosine or l2 distance. On the other
hand, (Kernel) SHAP grounds these definitions in game theoretic
principles to guarantee that the explanations satisfy certain desired
properties. More details about the intuition behind the definitions
of these functions and their computation can be found in Ribeiro
et al. [20] and Lundberg and Lee [15].

Proposed Framework
In this section, we discuss our framework in detail. First, we discuss
some preliminary details about our set up. Then, we discuss the
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intuition behind our approach. Lastly, we present the technical
details of our approach along with a discussion of some of our
design choices and implementation details.

Preliminaries
Setting: Assume that there is an adversary with an incentive to
deploy a biased classifier f formaking a critical decision (e.g., parole,
bail, credit) in the real world. The adversary must provide black
box access to customers and regulators [19], who may use post hoc
explanation techniques to better understand f and determine if f is
ready to be used in the real world. If customers and regulators detect
that f is biased, they are not likely to approve it for deployment.
The goal of the adversary is to fool post hoc explanation techniques
and hide the underlying biases of f .
Input: The adversary provides the following to our framework:
1) the biased classifier f which they intend to deploy in the real
world and, 2) an input datasetX that is sampled from the real world
input data distribution Xdist on which f will be applied. Note that
neither our framework nor the adversary has access to Xdist .
Output: The output of our framework will be a scaffolded classifier e
(referred to as adversarial classifier henceforth) that behaves exactly
like f when making predictions on instances sampled from Xdist ,
but will not reveal the underlying biases of f when probed with
leading post hoc explanation techniques such as LIME and SHAP.

Intuition As discussed in the previous section, LIME and SHAP
(and several other post hoc explanation techniques) explain indi-
vidual predictions of a given black box model by constructing local
interpretable approximations (e.g., linear models). Each such local
approximation is designed to capture the behavior of the black box
within the neighborhood of a given data point. These neighbor-
hoods constitute synthetic data points generated by perturbing
features of individual instances in the input data. However, in-
stances generated using such perturbations could potentially be
off-manifold or out-of-distribution (OOD) [16].

To better understand the nature of the synthetic data points gen-
erated via perturbations, we carried out the following experiment.
First, we perturb input instances using the approach employed by
LIME (See previous section). We then run principal component anal-
ysis (PCA) on the combined dataset containing original instances
as well as the perturbed instances, and reduce the dimensionality to
2. As we can see from Figure 1, the synthetic data points generated
from input perturbations are distributed significantly differently
from the instances in the input data. This result indicates that de-
tecting whether a data point is a result of a perturbation or not is
not a challenging task, and thus approaches that rely heavily on
these perturbations, such as LIME, can be gamed.

This intuition underlies our proposed approach. By being able
to differentiate between data points coming from the input dis-
tribution and instances generated via perturbation, an adversary
can create an adversarial classifier (scaffolding) that behaves like
the original classifier (perhaps be extremely discriminatory) on the
input data points, but behaves arbitrarily differently (looks unbi-
ased and fair) on the perturbed instances, thus effectively fooling
LIME or SHAP into generating innocuous explanations. Next, we
formalize this intuition and explain our framework for building
adversarial classifiers that can fool explanation techniques.

Building Adversarial Classifiers Let f be the biased classifier
described earlier. The adversary would like to design a framework
such that if and when end users generate explanations of this black
box, post hoc techniques can be fooled into thinking that the model
is innocuous. Recall that the real world data on which this classifier
is likely to be applied follows a distribution Xdist , and X is a set
of N data points sampled from this distribution that the adversary
has access to. To fool the post hoc techniques, the adversary could
design an adversarial classifier that exhibits biased behavior on
instances sampled from Xdist , and remain unbiased on instances
that do not come from Xdist . Since the feature importances output
by LIME and SHAP rely heavily on perturbed instances (which may
typically be OOD samples, e.g. Figure 1), the resulting explanations
will make the classifier designed by the adversary look innocuous.

Assuming ψ is a unbiased classifier (e.g., makes predictions
based on innocuous features that are uncorrelated with sensitive
attributes), the adversarial classifier e takes the following form:

e(x) =

{
f (x), if x ∈ Xdist

ψ (x), otherwise

In order to create such a classifier, we need to be able to decide
whether a given data point x comes from Xdist or not.

Detecting OOD Samples To build a classifier is_OOD that de-
tects if a given data point is an out-of-distribution (OOD) sample
(is_OOD(x) = True) or not, we construct a new dataset from the
instances in X. Specifically, we perturb (more details in Experimen-
tal Evaluation) each instance x in X to generate a new instance xp .
Let us denote the set of all the instances generated via perturbation
as Xp . The instances in X are then assigned the class label False
indicating that they are not OOD samples, while the instances in
Xp are assigned the class label True (indicating that they are OOD
samples) unless they are already inX. We then train an off-the-shelf
classifier on the combined dataset X ∪ Xp and their corresponding
class labels (assigned as discussed above).

EXPERIMENTAL RESULTS
In this section, we discuss the detailed experimental evaluation of
our framework. First, we analyze the effectiveness of the adversarial
classifiers generated by our framework. More specifically, we test
how well these classifiers can mask their biases by fooling multiple
post hoc explanation techniques. Next, we evaluate the robustness
of our adversarial classifiers by measuring how their effectiveness
varies with changes to different parameters (e.g., weighting ker-
nel, background distribution). Lastly, we present examples of post
hoc explanations (both LIME and SHAP) of individual instances
in the data to demonstrate how the biases of the classifier f are
successfully hidden.

Datasets We experimented with multiple datasets pertaining to
diverse yet critical real world applications such as recidivism risk
prediction, violent crime prediction, and credit scoring. Below, we
describe these datasets in detail (See Table 1 for detailed statistics).
Our first dataset is the COMPAS dataset which was collected by
ProPublica [2]. This dataset captures detailed information about
the criminal history, jail and prison time, demographic attributes,
and COMPAS risk scores for 6172 defendants from Broward Couty,
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Dataset Size Features Positive Class Sensitive Feature

COMPAS 6172 criminal history, demographics, COMPAS
risk score, jail and prison time

High Risk (81.4%) African-American (51.4%)

Communities & Crime 1994 race, age, education, police demographics,
marriage status, citizenship

Violent Crime Rate (50%) White Population (continuous)

German Credit 1000 account information, credit history, loan
purpose, employment, demographics

Good Customer (70%) Male (69%)

Table 1: Summary of Datasets

Florida. The sensitive attribute in this dataset is race – 51.4% of the
defendants are African-American. Each defendant in the data is
labeled either as high-risk or low-risk for recidivism. Our second
dataset is Communities and Crime (CC) that captures various
socio-economic and law enforcement aspects, as well as crime
across various communities in the US [18]. This dataset contains
information 1994 communities (each community is a data point)
in total. The sensitive attribute in this dataset is the percentage of
Caucasian population. This percentage varies widely across com-
munities and ranges from 2.68% to 99.63%. Each community is
assigned a label depending on if the violent crime proportion in
that community is above the median (violent crime rampant) or
not. The third dataset we use is the German credit dataset from
the UCI repository [4]. This dataset captures financial and demo-
graphic information (including account information, credit history,
employment, gender) of about 1000 loan applicants. The sensitive
attribute in this dataset is gender – 69% of the individuals are male.
Each individual in the dataset is labeled either as a good customer
or a bad one depending on their credit risk.

Experimental Setup Here, we discuss the implementation details
of our framework. We randomly split all the datasets into training
(90%) and test (10%) sets. We build our framework using the training
set and evaluate it on the test set.
Biased Classifier f : We construct f to be a perfectly discriminatory
classifier that uses a sensitive feature i.e., f makes predictions
purely based on race in the case of COMPAS and Communities and
Crime datasets (if race = African American, then predict 1, otherwise
set predict 0), and based on gender for the German Credit dataset.
Perturbations & OOD classifier : For LIME, we generate perturbations
for every data point in the data set X by adding random noise
sampled fromN(0, 1) to each feature value. For SHAP, we randomly
choose a subset of features for each data point andmark their values
as missing by replacing them with their corresponding values from
background distribution1.We choose the background distribution
for SHAP to be cluster centers from kmeans with 10 clusters. We use
these newly generated perturbations as well as the input data points
to train the OOD classifier to detect OOD samples (See Proposed
Framework section). We use the standard sklearn implementation
of a random forest with 100 tree estimators as our OOD classifier.
Unbiased Classifier ψ : We build the unbiased classifier ψ by con-
structing synthetic uncorrelated features that have zero correlation

1See Lundberg and Lee [15] for more details.

Figure 2: COMPAS: % of data points for which each fea-
ture (color coded) shows up in top 3 (according to LIME and
SHAP’s ranking of feature importances) for the biased clas-
sifier f (left), our adversarial classifierwhereψ uses only one
uncorrelated feature to make predictions (middle), and our
adversarial classifierwhereψ uses twouncorrelated features
to make predictions (right).

with sensitive attributes (e.g., race or gender). We experiment with
one or two uncorrelated features. When we only have one uncorre-
lated feature in a particular experiment,ψ solely uses that to make
predictions (if uncorrelated feature = 1, then predict 1, else predict
0). On the other hand, when we have two uncorrelated features
in an experiment, we base the predictions on the xor of those two
features. Note thatψ does not have to be restricted to always use
synthetic uncorrelated features. It can also use any other existing
feature in the data to make predictions. We experiment with syn-
thetic uncorrelated features on COMPAS and CC dataset, and with
Loan Rate % Income feature on the German credit dataset.
Generating Explanations: We use default LIME tabular implementa-
tion without discretization, and the default Kernel SHAP implemen-
tation with kmeans with 10 clusters as the background distribution.
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Figure 3: Communities and Crime: Similar to Fig 2; Race %
White is the sensitive feature here.

Figure 4: German credit: Similar to Fig 2 and 3, but unbiased
classifier ψ uses an existing feature (Loan Rate % Income) to
make predictions, and Gender is the sensitive feature. Fea-
ture importances for the biased classifier f shown in the fig-
ure (left) are generated using LIME; SHAP also produces sim-
ilar feature importance values.

Effectiveness of Adversarial Classifiers
To evaluate how successful our attacks are on LIME and SHAP, we
compute the percentage of data points for which race, uncorrelated
features (in case of COMPAS and CC) or Loan Rate % Income (in
case of German credit data) show up in top 3 when features are
ranked based on feature attributions output by LIME and SHAP. In
figures 2, 3, and 4, we show the results of these experiments.2

In case of LIME, when a single feature is used for the attack
i.e.,ψ uses a single feature for making predictions, the adversarial
classifier e successfully shifts the feature importance in LIME from
2Code available at: https://github.com/dylan-slack/Fooling-LIME-SHAP

the true informative feature (the sensitive feature used by f ) to
the uncorrelated feature in 100% of held-out points for COMPAS
(Figure 2 - top and middle) and CC (Figure 3 - top and middle),
and to the Loan % Income feature in 91% for German (Figure 4 -
middle). Furthermore, the sensitive feature appears at 2nd or 3rd
rank position roughly only as often as other features. When both
uncorrelated features are used to defineψ (for COMPAS and CC),
the 1st and 2nd rank positions for nearly all the data points are
occupied by these features, with the sensitive feature entering into
3rd place at about the same rate as other features (Figures 2 & 3
- top right). These results demonstrate that the LIME explanation
technique has been effectively fooled by the adversarial classifier e
for all three datasets.

For SHAP, when a single uncorrelated feature is used for the
attack, the adversarial classifier e successfully shifts the feature
importance from the sensitive feature in 100% of data points in
CC (Figure 3 - bottom and middle), 84% of data points in COMPAS
(Figure 2 - bottom and middle), and 85% of data points in German.
When two uncorrelated features are used in the attack (for COM-
PAS and CC), the adversarial classifier is less successful in removing
the bias feature from 1st place in the ranking, succeeding in only
67% and 71% instances for COMPAS and CC respectively (Figures 2
& 3 - bottom right). This is due to SHAP’s local accuracy property
that ensures that feature attributions must add up to the differ-
ence between a given prediction and the average prediction for
the background distribution. This property will tend to distribute
feature attributions across several features when it is not possible
to identify a single most informative feature.

To ensure that the adversarial classifiers e are faithfully approx-
imating the original classifiers f on instances from the original
dataset, we evaluate the fidelity of e w.r.t. f by computing the per-
centage of held-out instances on which their predictions agree. In
case of LIME, our adversarial classifiers perfectly reproduce the
classifier f on all datasets 100% of the time. On the other hand, in
case of SHAP, our adversarial classifiers are slightly less effective:
75% for CC, 80% for German, and 91% for COMPAS. These results
indicate that our approach has constructed adversarial classifiers
e that successfully fool LIME and SHAP, making them look like
the unbiasedψ classifiers, while behaving like the original biased
classifiers f on input data.

Effect of Perturbation Detection Accuracy
Our approach relies on the OOD classifier to detect whether a given
instance is a result of perturbation or not. Here, we investigate how
accurate does this classifier have to be for our attacks to be effective.
We train a number of different OOD classifiers with varying accu-
racies (F1 scores) on the COMPAS dataset. For each OOD classifier,
we evaluate the effectiveness of the resulting attacks (measured
as percentage of data points for which race is the most important
feature in the post hoc explanations). The results are presented in
Figure 5. When the OOD classifiers are unable to adequately dif-
ferentiate between perturbed instances and points from the input
dataset, both LIME and SHAP explanations detect race as the most
important feature i.e., the adversarial attacks are not successful.
However, once the OOD classifier is more accurate, the adversarial
attacks are successful, and both LIME and SHAP do not identify
race as the most important feature. Between the two, LIME requires
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(a) LIME COMPAS Sensitivity Analysis

(b) SHAP COMPAS Sensitivity Analysis

Figure 5: Effectiveness of our attack: % of data points for
which race is the most important feature vs. the F1 score of
the OOD classifier (perturbation detection) for both LIME
and SHAP on the COMPAS dataset over a variety of models
(fit with line plot over mean of binned points).

Feature Before After attack

Race -0.42 0.0
Uncorrelated feature 1 0.0 0.42
Average of other features 0.0 0.0

Table 2: Feature coefficients of LIME explanations for an in-
stance from COMPAS, before and after an attack (ψ uses a
single feature).

the OOD classifier to be more accurate for the attack to be effective,
but is very vulnerable to these attacks once the F1 score is above 0.8.
SHAP, on the other hand, starts responding to the attacks with a
less accurate OOD classifier (F1 score ∼ 0.45), however, the effect is
more gradual; it needs a very accurate OOD classifier to completely
hide the bias. These results indicate that our attacks are effective as
long as it is possible to differentiate between perturbed instances
and input data points with a reasonable accuracy.

(a) Example SHAP explanation for biased classifier f

(b) SHAP explanation of the same instance after the attack (e )

Figure 6: Example SHAP explanations for a data point with
biased classifier f (top) and adversarial classifier e (bot.).

Robustness to Hyperparameters
We analyze the behavior of our framework when different parame-
ters are varied at test time when generating LIME and SHAP expla-
nations for COMPAS; we summarize the key results here. First, we
observe that classifiers that are adversarial to LIME are ineffective
against SHAP explanations, while adversarial classifiers designed
for SHAP have varying effectiveness against LIME. On varying
the LIME kernel width between 0.15

√
M to 0.95

√
M (default kernel

width is 0.75
√
M , whereM is the number of features), the attacks

remain equally effective. Additionally, changing the LIME kernel
to use l1 norm for distance instead of the default l2 norm also does
not impact the effectiveness. For SHAP, we train our adversarial
classifier assuming the default background distribution of K-means
with 10 clusters; 5 and 15 clusters at test-time are also equally effec-
tive. Using a background distribution of all zeroes for SHAP makes
our attacks even more pronounced.

Example Explanations
Here, we present few example explanations from the COMPAS
dataset that demonstrate the effectiveness of the technique. In case
of LIME explanations in Table 2, we see that Race as a feature is com-
pletely hidden from the explanation after the attack, even though it
was the sole important feature for the original classifier f . Similarly,
for SHAP explanations in Figure 6, the sole important feature (race)
is considerably hidden in the explanation after the attack, although
not completely nullified as in the LIME explanation.

RELATEDWORK
This work lies at the intersection of various emerging sub fields of
machine learning such as post hoc explanation methods and bias
detection. Below, we provide a brief overview of the related work.

Perturbation-based Explanation Methods Perturbation-based
methods are a popular tool for post hoc feature attribution. In addi-
tion to LIME [20] and SHAP [15], a number of other perturbation-
based techniques have been proposed in literature. For instance,
anchors [21] use (non-linear) rules to express more actionable local
explanations. GAM [10] interprets local attributions as conjoined
weighted rankings and uses k-medoids clustering to identify proto-
typical explanations.

Criticism of Post hoc Explanations Rudin [22] argues that post
hoc explanations are not reliable, as these explanations are not
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necessarily faithful to the underlying models and present corre-
lations rather than information about the original computation.
Ghorbani et al. [8] show that some explanation techniques can be
highly sensitive to small perturbations in the input even though the
underlying classifier’s predictions remain unchanged. Mittelstadt
et al. [16] note that perturbation points created in LIME and SHAP
are not at all intuitive, especially in case of structured data.

Adversarial Explanations There has been some recent research
on manipulating explanations in the context of image classification.
Dombrowski et al. [5] show that by modifying inputs in a way that
is imperceptible to humans, they can arbitrarily change saliency
maps. Heo et al. [9] also propose similar attacks on saliency maps.

Interpretability and Bias Detection Doshi-Velez and Kim [6] ar-
gue that interpretability can help us evaluate if a model is biased or
discriminatory. On the other hand, Lipton [14] posits that post hoc
explanations can never definitively prove or disprove unfairness
of any given classifier. Selbst and Barocas [23] and Kroll et al. [12]
show that even if a model is completely transparent, it is hard to
detect and prevent bias due to the existence of correlated variables.
More recently, Aivodji et al. [1] demonstrate that post hoc expla-
nations can potentially be exploited to fairwash i.e., rationalize
decisions made by an unfair black-box model.

CONCLUSIONS AND FUTUREWORK
We proposed a novel framework that can effectively hide discrimi-
natory biases of any black box classifier. Our approach exploits the
fact that post hoc explanation techniques such as LIME and SHAP
are perturbation-based to create a scaffolding around the biased
classifier such that its predictions on input data distribution remain
biased, but its behavior on the perturbed data points is controlled
to make the post hoc explanations look completely innocuous. Ex-
tensive experimentation with real world data from criminal justice
and credit scoring domains demonstrates that our approach is ef-
fective at generating adversarial classifiers that can fool post hoc
explanation techniques, finding that LIME is more vulnerable than
SHAP. Our findings thus suggest that existing post hoc explana-
tion techniques are not sufficient for ascertaining discriminatory
behavior of classifiers in sensitive applications.

This work paves way for several interesting future research
directions in ML explainability. First, it would be interesting to sys-
tematically study if other classes of post hoc explanation techniques
(e.g., gradient based approaches) are also vulnerable to adversarial
attacks. Second, it would be interesting to develop new techniques
for building adversarially robust explanations that can withstand
attacks such as the ones outlined in this work.
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