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Measuring a group fairness metric such as Plo=1l6=1,0=1] = 1 — p, Condition ”Model Closeness”: There exists g, egs such that for all b, c:
statistical parity or equal opportunity under noisy Plo=1lv=1,0=1]=1—r Prly=1jv=b,d=c, f=1] = Prly=1jv=b,d=c £=0] + g + ez
data.

Bound A Bound B2

Theorem 5.1: If for any ¢ € {0, 1} the precision and recall of the proxy © is at Theorem: Let vp2,€p2,g be such that the model closeness holds with eg
least 1 — y4, and that |ro — 71|, |po — p1| are bounded by vg3. Then we have that
Motivation v A
G —G| <2 -74. .
|G — G| <2-vp2+3-epo.

Toxicity classifier (y) for comments.
Goal: Measure fairness across demographlcs (/_0, 1) but only for Question: Can we derive a better bound by assuming some structure?

specific topic (v=17).

_, Ideally, we want to evaluate Conditional Statistical Parity* as: Alternate Bounds based on General

Refined Bound

Gsp :P[y: 1|'U =1, £=O] _]P[y =1 |’U =1,4= 1] COrrelathn In isolation, previous bounds might be loose — Let’s combine them!
Idea: Assumptions on parameters (y, v, v, ).

Challenge: (y, /, v) not jointly observable. Theorem: Let v4, (YB1,€B1) and (yB2,€p2) be the errors up to which

conditions A, Bl and B2 above hold. Then

Problem Formulation Ply=1[0=0,0=1,¢=1] | P[y=1[o=1,6=1,2=]] G — &1 < 2min(va. a1, 750]
) ) T EB3 * (Q'YA ‘|"YBl) s~EB1. “9B1

Ply=1|0=0,0=0,¢=I] | Ply=1|o=1,0=0, £=I]
Table 1: Value of the outcome y over the confusion matrix Note: Linear in y and quadratic in ¢ .
of v,9, conditioned on group ¢ = [.

Gsp=Ply=1|0=1,=0]-Ply=1|p=1,£=1] Simulations
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Condition ”Closeness of Diagonals”: There exists eg; such that . i | g
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0 . Prly=1jv=1,5=0,£=0] — Prly=1jv=0,5=1,£=0]| < ep, krfion K Fetmaton Error Suiaton e
Contributions
Prly=1|lv=1,9=0,£=1| — Prly=1jv=0,0=1,4=1]| < €p1

Lesson: Refined bound dominates other ones.

(v, I, v) not jointly observable. What about using a topic classifier (v)?
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We characterize a variety of conditions under which the estimation
error above can be bounded.
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These bounds depend on the precision/recall of the classifier v as

well as the joint correlations between y,v, and v. Theorem: Let ep; be such that that closeness of diagonal condition holds
with eg; and that |rg — pg|, |r1 — p1| are bounded by g1, then
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Estimation error

|G — é| < 2(yB1 + €B1)- 95th-quantile of
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Lesson: Even weak assumptions on ¢ are enough to
significantly reduce the bound.

* Results apply to equal opportunity too.



