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Motivation

Fairness Accuracy Tradeoff with MINIMAXFAIRRELAXED

» Machine learning researchers and practitioners have often focused on achieving group Algorithm 1: MINIMAXFAIR :
fairness with respect to protected attributes (race, gender, ethnicity, etc.) Input: {x;,y;}7_,, adaptive learning rate n, populations Gy with relative sizes p = %, Fairness Accuracy Tradeoff Gurves

» Equality of error rates is one of most intuitive and well-studied group fairness notions iterati?n count T, loss function L, model class H

» But in practice, equalizing error rates and similar notions may require artificially inflating Let ex(h) = [Gil 2 (xy)eG, HX V) Linear Regression on Communities Dataset Classification (FP) on COMPAS Dataset
error on easier-to-predict groups and may be undesirable for a variety of reasons Initialize Ax = px Vk Trajectories over 20000 Rounds on Communities R actofiesiover Gammasiovar SI60 Hountds

» There are many social applications of machine learning in which most/all of the targeted fort=1to T do ________nearegression T i
population is disadvantaged Find h =nep 2 Ak * ex(h) "
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Update each \x = Ak * exp(n; * ex(hy))
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» Might be interested in ensuring predictions are roughly equally accurate across racial
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» But, if this can only be achieved by raising lower group error rates, then we have S 0.027- GEaMmMa=0.02653 £ os0]  gamma=019793
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» Therefore, might be preferable to consider the alternative fairness criterion of minimax MINIMAXFAIRRELAXED F - 5 '

Ngamma=0.02472 ma=b.12371

ma=o_oz411 0.10 4 xa;ﬁ@\,{j&?ﬁ
\ 3

0.025

» Seek not to equalize error rates, but to minimize largest group error rate, making sure that Inout: [X. v17 . adaptive | , t ations G. with relative i "G 0024 ~aamme=o02229 | 0,05 M i
the worst-off group is as well-off as possible nput: _{ i» Yiti-1, adaptive learning rate 7, populations Gy with relative sizes px = =, 0025 | a0 - RN
iteration count T, loss function L, model class H, maximal group error
. . Let Ek(h) _ GL Z(X )GG L(X, y) . Pop Err:)r{MSE} N I?op Error (0/1 Lt?ss}
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1. Propose two algorithms, both two player zero-sum games: or ,t =11o o COMPAS: Arrest data from Broward County, Florida, Label: Two year recidivism, Groups:
- . . . . Find hy = argminpey > Pk + Ak) * ex(h) R

1.1 MINIMAXFAIR: Finds a minimax group fair model from a given statistical class / ace, sex
1.2 MINIMAXFAIRRELAXED: Finds a model that minimizes overall error subject to the Update each A = max (Ax + 7 (ex(hr) —7).0)

constraint that all group errors must be below a predetermined threshold end

. . : , o Generalization Results
> Navigates tradeoffs between a relaxed notion of minimax fairness and overall accuracy Output: Uniform distribution over set of models h17 . hT

2. Prove that both algorithms converge and are oracle efficient. We also study their
generalization properties.

_ MINIMAXFAIR vs. Equal Errors Regression
3. Show how our framework can be extended to handle different types of error rates, such as 9 9 0
false positive (FP) and false negative (FN) rates, as well as overlapping groups

4. Provide a thorough experimental analysis of our two algorithms under different prediction Comparison of Minimax and Equal Error Solutions on Seoul Bike Dataset
regimes

» With probability 1 — §, generalization gap per group bounded by

log % + dlog n;
n;

where d is VC dimension of class H, and n; is sample size of group i
> L . .
MINIMAXFAIR Equal Errors Generalization gap for minimax group is bounded by

Mathematical Framework Group Errors (MSE) on Bike

LinearRegression

Group Errors (MSE) on Bike
LinearRegression
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» Consider pairs of dependent and independent variables (X;, y;)7_, divided into K groups —__ M 00230 = G j n,
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