
Density Estimation

● Want to estimate underlying probability distribution of 
observed data, enabling likelihood estimation and sampling

Data Privacy

● Learning and releasing such an estimate could leak 
potentially sensitive information if data is linked to individuals 

● Solution: release estimate with differential privacy [1] 
guarantee, where change in distribution of our estimate due 
to removal of a single individual (D vs. D’) is bounded:

Existing Baselines

● DP-EM [2], which enables privacy-preserving Gaussian 
mixture models (DP-MoG) through expectation maximization
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Anomaly Detection as Density Estimation

● Can approach anomaly detection through a simple likelihood 
thresholding mechanism; predicts in-distribution or 
out-of-distribution depending on whether density exceeds 
some empirically derived threshold

Experiment

● Generated synthetic anomalies by uniformly sampling points 
at tail ends of the observed data distribution; proposed 
approach performs better than DP-MoG and comparably to a 
non-private mixture of Gaussians
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Results

Likelihood Estimation

Synthetic Data Generation

Figure 3: Dimension-wise histograms of synthetically 
generated Life Science data, superimposed over real data, 
for ε = 0.6 and δ = 1.52 × 10-5. Left column is our algorithm; 
right column is our baseline DP-MoG.

Figure 2: Average log likelihood on a held out test set from 
the Life Science dataset as a function of the cumulative 
privacy loss ε.

Figure 4: ROC curves displaying true positive rate and false 
positive rate for private and non-private likelihood threshold 
models. Privacy expenditure was calculated using the 
moments accountant with δ = 1.52 × 10−5.

Learning Invertible Transformations

● Idea: optimize a sequence of invertible transformations, 
mapping simple prior distribution to a complex distribution

● Optimize parameters to minimize negative log likelihood of 
the data, achieving a privacy guarantee via DP-SGD [3]:

Prior

● Simplistic choice of Gaussian can be improved upon by fitting 
a Gaussian mixture model using DP-EM to act as prior

Model Architecture

● Masked Autoregressive Flow [4], which composes a 
sequence of MADE and activation normalization layers


