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Introduction

Density Estimation

e \Want to estimate underlying probability distribution of
observed data, enabling likelihood estimation and sampling

Data Privacy

e Learning and releasing such an estimate could leak
potentially sensitive information if data is linked to individuals

e Solution: release estimate with differential privacy [1]
guarantee, where change in distribution of our estimate due
to removal of a single individual (D vs. D’) is bounded:

Pr[A(D) € S] < exp(e) Pr[A(D’) € 8]+ 4§

Existing Baselines

e DP-EM [2], which enables privacy-preserving Gaussian
mixture models (DP-MoG) through expectation maximization

Approach

Learning Invertible Transformations

e |dea: optimize a sequence of invertible transformations,
mapping simple prior distribution to a complex distribution
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e Optimize parameters to minimize negative log likelihood of
the data, achieving a privacy guarantee via DP-SGD [3]:
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log pg(x) = log q(fy ' (x)) + log

Prior

e Simplistic choice of Gaussian can be improved upon by fitting
a Gaussian mixture model using DP-EM to act as prior

Model Architecture

o Masked Autoregressive Flow [4], which composes a
sequence of MADE and activation normalization layers

Results

Likelihood Estimation

for Privacy-Preserving Density Estimation
Chris Waites and Rachel Cummings

Average Log Likelihood (Test)

)
i 14
0.07; I S e DP-NF (GDP)
o5 i —— DP-NF (MA)
RS ~-=- DP-MoG (MA)
5.0 4 v == DP-MoG (2CDP)
——L T T T
0 1 2 3 4

Gig COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

Application: Anomaly Detection

Anomaly Detection as Density Estimation

e Can approach anomaly detection through a simple likelihood
thresholding mechanism; predicts in-distribution or
out-of-distribution depending on whether density exceeds
some empirically derived threshold

Experiment

e Generated synthetic anomalies by uniformly sampling points
at tail ends of the observed data distribution; proposed
approach performs better than DP-MoG and comparably to a
non-private mixture of Gaussians

Cumulative Privacy Loss € (6 =1.52 x 107°)

Figure 2: Average log likelihood on a held out test set from
the Life Science dataset as a function of the cumulative
privacy loss €.

Synthetic Data Generation
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False Positive Rate

Figure 4: ROC curves displaying true positive rate and false
positive rate for private and non-private likelihood threshold
models. Privacy expenditure was calculated using the
moments accountant with 6 = 1.52 x 10-5.
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